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Abstract We show that real model sets with real internal spaces are determined, up to trans-
lation and changes of density 0, by their 2- and 3-point correlations. We also show that there
exist pairs of real (even 1D) aperiodic model sets with internal spaces that are products of
real spaces and finite cyclic groups whose 2- and 3-point correlations are identical but which
are not related by either translation or inversion of their windows. All these examples are
pure point diffractive.

Placed in the context of ergodic uniformly discrete point processes, the result is that real
point processes of model sets based on real internal windows are determined by their second
and third moments.

1 Introduction

An enduring problem of crystallography is the inference of the internal structure of a crystal
from physically measurable quantities, notably diffraction. Perfect knowledge of the diffrac-
tion is equivalent to perfect knowledge of the 2-point correlation of the structure. However,
even perfect knowledge of the diffraction, or 2-point correlation, is insufficient to pin down
the structure of a crystal, with counterexamples going back to L. Patterson [22] (see [12] for
a good source of information on this subject).

Quasicrystals present the same problem, but are even more difficult. Based on the theory
of the covariogram, Baake and Grimm [10, 11] have given examples of model sets (or cut
and project sets, as they are often called), which are intrinsically different but have the same
diffraction.

One can ask whether knowledge of additional higher point correlations, notably the
3-point correlation measure, could provide sufficient information determine the structure.
But again, even for periodic structures, there are counterexamples [12]. The main result of
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this paper (Theorem 3) however, is a positive result: in the context of regular model sets
with real internal spaces, the 2- and 3-point correlations do determine the model set (up to
translation and to modification by sets of density 0).

The possibility that in pure point diffractive sets (of which regular model are good ex-
amples) the 2- and 3-point correlations would suffice to know all the higher correlations
was suggested by D. Mermin in a very interesting paper [18] on a new approach to han-
dling symmetry for quasicrystals. His ideas are based on the Landau approach to second
order phase transitions and involve rather informal manipulation of quantities which, as the
author recognizes, cannot be mathematically justified as given. To quote from that paper:
“. . . this informal Fourier space argument that the identity of all second and third order cor-
relations implies the identity of all higher correlations is disarmingly trivial. I would very
much like to learn of a comparably simple informal argument or an instructive counterex-
ample in position space.”

In spite of Theorem 3, Mermin’s suggestion is not correct in general. This can already be
seen in the periodic case from the results of [12], which we illustrate here in Sect. 7.1 in the
form of periodic model sets. In Sect. 7.2 we offer an example of a pair of aperiodic model
sets, based on an internal space which is the direct product of a real line and a finite cyclic
group, for which the 2- and 3-point correlations are identical but the point sets themselves
cannot be transformed into each other either by translation or inversion of their windows.

The situation with more general internal spaces is, no doubt, difficult. Even the simple
case of a product of a real space and a finite group alluded to above is quite complicated.
We touch on it here in Sect. 7. Although, as we have just pointed out, counterexamples can
occur in this case, in other instances we can obtain a positive result. For instance, it is easy to
see that the vertices of rhombic Penrose tilings, which are model sets based on R

2 × Z/5Z,
are determined by their 2-and 3-point correlations.

Aperiodic sets are often studied in the context of dynamical systems and/or stochastic
point processes. This approach was pioneered in [23] and has been used extensively both
in mathematical and physical models, [3, 6, 9]. This applies particularly to regular model
sets (see Sect. 2 for definitions) where things can be stated much more precisely, [2, 13, 25].
Instead of a single model set one considers its hull, namely the set of all uniformly discrete
points sets that are in the closure of its translation orbit (see Sect. 8 for more details). This
hull is then uniquely ergodic, and we may view it as describing a uniformly discrete ergodic
point process.

Any such uniformly discrete point process (with a common lower bound on the distance
between closest points) is characterized by knowledge of its entire set of moments (second,
third, etc.) [6]. Knowledge of the kth moment is equivalent to knowledge of the k-point
correlation. Thus our result about model sets with real internal spaces can be rewritten (The-
orem 4) as the statement that for them only finitely many (namely the second and third) of
these infinitely many moments are needed.

The main idea behind proving Theorem 3 is to transfer the correlation problem to the
internal space of the cut and project scheme defining the model sets. There the correlations
are directly related to what have been called in [14] the k-deck functions, or the covariogram
in the case k = 2. These become tractable after Fourier transformation, a fact that has been
discovered several times before, see for example [12, 14]. The main obstacle is dealing
with the set E of zeros (the extinctions in the diffraction) of the Fourier transform of the
characteristic function of the window of the model set. Here we offer Proposition 2 which
we have not seen explicitly stated in the literature, which allows us to proceed as long as E

has no interior points.
Finally in Sect. 8 we point out [17] which offers a different approach via spectral theory

to determining uniformly discrete ergodic pure point diffractive point processes by means
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of their moments. However, ultimately it too returns to similar problems about extinctions.
For a short survey covering this and material on point processes, see [21].

2 Model Sets

We work in R
d . The usual Lebesgue measure will be denoted by �. The open cube of side

length R centred at 0 is denoted by CR , so �(CR) = Rd . A cut and project scheme for R
d is

a triple S = (Rd ,H, L) consisting of a compactly generated locally compact Abelian group
H and a lattice L ⊂ R

d × H for which the projection mappings π1 and π2 from R
d × H

onto R
d and H are injective and have dense image respectively:

R
d π1←− R

d × H
π2−→ H

∪
L

�←→ L.

(1)

Then L := π1(L) is isomorphic as a group to L (though it is rarely a discrete subgroup
of R

d ) and we have the composite mapping (·)� : L −→ H with dense image defined by
π2 ◦ (π1|L)−1.

The statement that L is a lattice is equivalent to saying that it is a discrete subgroup of
R

d × H and that the quotient group T := (Rd × H)/L is compact. Notice that if H = {0}
then L is a lattice in R

d and we are back in the situation of normal periodic crystallography.
Thus the theory of model sets is a generalization of the theory of periodic sets and includes
them as special cases.

We let θH be a Haar measure on H , scaled so it gives measure 1 to any fundamental
region of L in the space R

d × H under the product measure � ⊗ θH . This is the same as
saying that the naturally induced measure θT on T is normalized so that θT(T) = 1. This
normalization leads to the uniform distribution equation (2) in the form given in Theorem 1
below.1

For W ⊂ H ,

Λ(W) := {u ∈ L : u� ∈ W }.
A set � ⊂ H is called a window if �◦ ⊂ � ⊂ � for some compact set � ⊂ H which

satisfies �◦ = �. We shall often deal with families of windows based on a single �. A model
set or cut and project set is a set of the form

Λ(x,y) = Λ(x,y,�) := x + Λ(−y + �),

where � is a window and (x, y) ∈ R
d × H . The model set is called regular if the boundary

of � (or equivalently of �) has measure 0 with respect to the Haar measure of H .
It is easy to see that for a fixed �, Λ(x,y,�) depends only on ξ := (x, y)mod L, so we

may write Λ(ξ,�) instead.
The cut and project scheme S together with a compact window � is called irredundant

if the equation t + � = � implies that t = 0. When dealing with model sets it is always

1In particular situations, for instance if the internal space is a real space, one may prefer to normalize on
the basis of what seems natural for θH and thereby introduce a multiplicative factor into (2). This amounts
to corresponding variations by multiplicative factors in the correlations and frequencies in which we are
interested, but has no intrinsic importance to what we are discussing here.
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possible to adjust the cut and project scheme (by factoring out a subgroup of H ) to get an
irredundant cut and project scheme which defines exactly the same family Λ(ξ,�), �◦ ⊂
� ⊂ �, though now � is replaced by its image in the quotient of H [2, 16, 25].

If S and S ′ are irredundant cut and project schemes for the same model set (or ones
differing on sets of density 0) then their internal spaces H,H ′ are isomorphic topological
groups by an isomorphism that induces an isomorphism of the corresponding lattices in the
obvious way. Thus one may speak of the irredundant cut and project scheme of a model set.
The proof of this essentially follows from the construction of H given in Sect. 5, see [2, 16].
We shall always assume that we are in the irredundant situation.

Model sets 
, regular or not, are Delone subsets of R
d , that is to say, there exist positive

real numbers r,R so that the cubes Cr,CR of side lengths r and R, no matter where they are
translated to in R

d , have at most one point of (respectively at least one point of) 
. Since
any model set 
 = Λ(x,y,�) also satisfies 
 − 
 ⊂ Λ(� − �) (sets of differences) and
since � − � is relatively compact, we see that 
 − 
 is also uniformly discrete, and by a
similar arguments, all finite sets of sums and differences


 ± · · · ± 
 (n terms)

are also uniformly discrete. This is the Meyer property of model sets [19].
Model sets are uniformly distributed point sets:

Theorem 1 [20] Let � ⊂ H be measurable and relatively compact. Then, assuming the
normalization of measures assumed in Sect. 2.

lim
R→∞

1

�(CR)
card(Λ(ξ,�) ∩ CR) = θH (�) (2)

for ξ ∈ T, θT almost surely. If the boundary of � has Haar measure 0 then the result holds
for all ξ ∈ T.

Remarks

(i) When we write limR→∞ 1
�(CR)

we mean that we use a (any) discrete increasing sequence
of positive real numbers {Rj } → ∞.

(ii) In this paper we need to work with averaging sequences like the one in Theorem 1.
The results here apply for any van Hove sequence {An} of subsets of R

d satisfying
the condition that there is a constant C > 0 with �(An − An) ≤ C�(An). In the case of
regular model sets, which are the main focus of this paper, all results quoted that depend
on averaging (frequencies, correlations) are actually independent of which averaging
sequence we use. This is a consequence of unique ergodicity.

(iii) In particular, although all averaging results in this paper are written with averages
over CR , the centres need not be restricted to 0 and cubes could be replaced by balls,
etc.

3 Correlations and Diffraction

Let 
 = Λ(ξ,�) be a regular model set. The frequency in 
 of a set of points
{0, x1, . . . , xn} ⊂ R

d is defined as

freq({0, x1, . . . , xn}) = lim
R→∞

1

�(CR)
card{y ∈ CR : y, y + x1, . . . , y + xn ∈ 
}.
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The frequency is the expected number of occurrences of the pattern per unit of volume
in R

d . There is no need for the elements of {0, x1, . . . , xn} to be distinct, though repetitions
can clearly be deleted.

The following is a well known consequence of the uniform distribution of model sets:

Proposition 1 Let � ⊂ H be non-empty and compact with � = �◦ and θH (∂�) = 0. Let

 = Λ(ξ,�) be a regular model set with �◦ ⊂ � ⊂ �. Then the frequency of {0, x1, . . . , xn}
in 
 = Λ(ξ,�) exists and

freq({0, x1, . . . , xn}) = θH

(
� ∩

n⋂
j=1

(−x�
j + �)

)
= θH

(
� ∩

n⋂
j=1

(−x�
j + �)

)

for all ξ ∈ T. In particular, the frequency of {0, x1, . . . , xn} in Λ(ξ,�) does not depend on
ξ but only on the cut and project scheme S and the closure � = � of the window.

Proof First assume the simple case that 
 = Λ(�). Then y, y + x1, . . . , y + xn ∈ 
 iff
y�, y� +x�

1, . . . , y
� +x�

n ∈ � iff y� ∈ W := �∩⋂n

j=1(−x�
j +�). The quantity we are looking

for is then

lim
R→∞

1

�(CR)
card(Λ(W) ∩ CR) = θH (W),

which proves the first claim in this case. In the general setting, we are looking at x+Λ(−y+
�), but it is clear that these translations do not affect the outcome. Nor does replacing � by
�, which only results in measure 0 changes to the set W . �

The (n + 1)-point correlation (n = 1,2, . . . ) of a model set 
 (or more generally any
locally finite subset of R

d ) is the measure on (Rd)n defined by

γ
(n+1)

 (f ) = lim

R→∞
1

�(CR)

∑
y1,...,yn,x∈CR∩


Txf (y1, . . . , yn)

= lim
R→∞

1

�(CR)

∑
x∈CR∩


y1,...yn∈


Txf (y1, . . . , yn),

for all f ∈ Cc((R
d)n). Here Tx is simultaneous translation of all the variables by x. The

simpler second sum is a result of the van Hove property of the averaging sequence {CR}.
Because model sets are Meyer sets, the sets of elements yj − x which make up the values of
the arguments of f occuring in the sums, lie in the uniformly discrete set 
 − 
. Hence for
model sets we find that

γ
(n+1)

 =

∑
x1,...,xn∈
−


freq({0, x1, . . . , xn})δ(x1,...,xn). (3)

In view of Proposition 1, all the correlations of model sets exist and they depend only
on the closure of the window. In other words, for a given compact window � which is the
closure of its interior, all model sets Λ(ξ,�) with �◦ ⊂ � ⊂ � have the same correlations
of all orders. Thus we can collect the model sets into families F (S,�) which all have the
same correlations.
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The diffraction of a point set in R
d is, by definition, the Fourier transform γ̂

(2)

 of its

2-point correlation. In the case of model sets, this can be described explicitly. For the given
cut and project scheme S , see (1), there is a Fourier dual Ŝ of it:

R̂d
π1←− R̂d × Ĥ

π2−→ Ĥ

∪
L◦ �←→ T̂,

(4)

formed by taking the Fourier duals of the groups involved in S [19]. All of these groups, be-
ing duals of locally compact Abelian groups, are also locally compact and Abelian. Although

R̂d is canonically isomorphic with R
d , sometimes, for the sake of clarity, it is convenient to

make the notational distinction, as we do here.
Here π1 and π2 again are projections. The dual of the compact group T is discrete, and

π1|T̂ is injective. The image of T̂ is denoted by L◦. There is again a mapping � : L◦ −→ Ĥ .
The diffraction of any regular model set defined by a window � is pure point [25] and is

supported on a subset of L◦ of R̂d ; it is explicitly given by

γ̂
(2)

 ({k}) = |1̂�(−k�)|2. (5)

The set of k ∈ R̂d at which the diffraction is not zero (and hence is actually positive) is the
set of locations of the Bragg peaks of 
 (the Bragg peaks being the combined information
of the location and intensity of the atomic part of the diffraction).

We wish to prove that the 2- and 3-point correlations completely classify all such families
F (S,�); that is to say, given that a point set is a model set in R

d , then the 2- and 3-point
correlations determine the cut and project scheme S and the compact window � up to
translation. We begin with an abstract result on extending partially defined group characters.

4 Extending Partial Characters

Let G be a locally compact Abelian group and let U(1) denote the compact group which is
the unit circle in C. The dual to G is the group Ĝ of all continuous characters, i.e. continuous
homomorphisms of G into U(1).

Suppose that E is a closed subset of G with no interior, and 0 /∈ E. Let D := G\E and
D(2) := {(k1, k2) : k1, k2, k1 + k2 ∈ D}.

Lemma 1 D(2) is dense in G × G.

Proof Suppose D(2) is not dense in G × G, i.e., there is a non-empty open set U × V ⊂
(G × G) \ D(2), where U,V ⊂ G are open. Since E is a closed subset of G with no interior,
D ∩ U , D ∩ V are nonempty open sets. For all u ∈ D ∩ U , v ∈ D ∩ V , we have (u, v) ∈
(G × G) \ D(2), i.e., u + v ∈ E. Thus, D ∩ U ⊂ −v + E. This is impossible since D ∩ U is
an open set and E has no interior. �

Proposition 2 Let

ϕ : D −→ U(1)
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be a continuous mapping satisfying

ϕ(s + t) = ϕ(s)ϕ(t)

whenever s, t, s + t ∈ D. Then there is a unique character χ ∈ Ĝ with χ |D = ϕ.

Proof Let U be the uniformity on G defined by its structure as a topological group: the basic
entourages are the sets

U(V ) := {(x, y) : G × G,x − y ∈ V }
where V runs through open neighbourhoods of 0 ∈ G. This uniformity also induces the rela-
tive uniformity on D by intersecting its entourages with D ×D, and this relative uniformity
induces the relative topology on D [15, Chap. 6].

We claim that ϕ : D → U(1) is uniformly continuous. We show that given any ε > 0
there is an entourage U(V (ε)) ∩ (D × D) for which (s, t) ∈ U(V (ε)) ∩ (D × D) implies
that |ϕ(s) − ϕ(t)| < ε.

In fact V (ε) := {s ∈ D : |ϕ(s) − 1| < ε} works. This is an open subset of D containing 0
and furthermore, (s, t) ∈ U(V (ε)) ∩ (D × D) implies s − t ∈ V (ε) and then s − t ∈ D and
|ϕ(s − t) − 1| < ε. Using the basic relation satisfied by ϕ, |ϕ(s) − ϕ(t)| = |ϕ(s − t)ϕ(t) −
ϕ(t)| = |ϕ(s − t) − 1| < ε, which what we wished to show.

Since G is locally compact, it is complete (see Corollary 1 in Chap. 3.3, [4]). Since E has
no interior, G is the closure of D. Since ϕ is uniformly continuous on D it extends uniquely
to a uniformly continuous function χ : G −→ U(1). Then the mapping G × G −→ U(1)

defined by (x, y) �→ χ(x + y)χ(x)−1χ(y)−1 is continuous and is equal to 1 on all of the
set D(2). By Lemma 1 D(2) is dense in G × G and so, by the continuity, this mapping is
identically equal to 1. Thus χ is a character. �

5 From Correlations to Model Sets

Model sets are an important modeling tool in the subject of quasicrystals. However, recog-
nizing them is awkward because the cut and project schemes that underlie them are not
obvious from the model sets themselves.

Here we quickly go over a construction given in [1], that allows one to recreate an ir-
redundant cut and project scheme for a model set 
, using the 2-point correlation mea-
sure γ (2).

We know that γ (2) is supported within the uniformly discrete set 
−
, which is a Meyer
set. Let L be the subgroup of R

d generated by the set 
 − 
. For each ε > 0 define

Pε := {t ∈ L : dens((t + 
)�
) < ε},
where � is the symmetric difference operator. We can use the Pε , 0 ≤ ε < 2 dens(
), as
a neighbourhood basis of 0 of a topology, called the autocorrelation topology, on L that
makes it into a topological group. Pε is called the set of the ε-almost periods of 
.

It is a notable fact about model sets that the sets Pε are relatively dense, a consequence
of the uniform distribution, see Theorem 3 [1].

Now we define H to be the (Hausdorff) completion of L in the autocorrelation topology.
Then a uniformly continuous homomorphism ϕ : L → H exists with the following proper-
ties:
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i) the image ϕ(L) is dense in H ;
ii) the mapping ϕ is an open mapping from L onto ϕ(L), the latter with the induced topol-

ogy of the completion H ;
iii) ker(ϕ) = closure of {0} in L.

Moreover, since Pε is precompact in the AC topology, H is a locally compact Abelian group.

Proposition 3 H is compactly generated.

Proof L is finitely generated [19, Proposition 7.4], say with finite generating set J = −J .
Then for any relatively compact open neighbourhood U of {0} in H , V := ⋃

j∈J (U + ϕ(j))

is also open and relatively compact. Let Vn := V + · · · + V (n summands). Then⋃∞
n=1 Vn = H . In fact, if x ∈ H then there exists y ∈ (x − U) ∩ ϕ(L) since ϕ(L) is dense

in H . Writing y = ϕ(j1 + · · · + jn) for some j1, . . . , jn ∈ J , we have x = u + ϕ(j1) + · · · +
ϕ(jn) ∈ Vn for some u ∈ U . Thus V is compact and generates H . �

Now we define L̃ := {(t, ϕ(t)) : t ∈ L}. Then L̃ is uniformly discrete and relatively dense
in R

d × H . Hence, L̃ is a lattice of R
d × H and S := (Rd ,H, L̃), along with the natural

projection maps, is a cut and project scheme. We introduce the mapping � : L −→ H as
above. It is nothing other than ϕ.

Theorem 2 � := 
� ⊂ H is compact and is the closure of its interior. Furthermore, 
 =
Λ(�) for some � lying between � and its interior.

This result can be found in [2, Propositions 4 and 6].
Although we see now that 
 is a model set from the cut and project scheme S , and we

have constructed S from γ (2), nonetheless, as we pointed out in the Introduction (see [10]),
γ (2) does not contain enough information to determine the window.

6 The Role of the 3-Point Correlation

Let 
 = Λ(�) where � is a window in H with boundary of measure 0. Let E = E(�) :=
{k ∈ Ĥ : 1̂�(k) = 0}, and D := Ĥ \ E. Since 1� is compactly supported and measurable, it
has a continuous Fourier transform 1̂�. The set E is closed, so D is an open set. Moreover,
since 1̂�(0) = �(�) > 0, we have 0 ∈ D. Measure 0 alterations to � do not affect E and D.
The relevance of D and E is immediate from (5).

We are going to show that the 3-point correlation is decisive in characterizing a model
set (amongst all other model sets) as long its window � in its irredundant cut and project
scheme satisfies E(�)◦ = ∅.

For real internal groups this is assured:

Proposition 4 If H = R
m then the sets E(�) have no interior points.

This is a consequence of the Paley-Wiener theorem [24], Theorem IX.12 since � has
compact closure. However, it is also easy to see directly:

Proof Let g be the real part of the function 1̂�. For k ∈ R
m,

g(k) =
∫

�

cos(2πk · x)dx.
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Writing out the Taylor expansion of cos around the origin and integrating term by term,
it is easy to see that g has a Taylor expansion valid on all of R

d and hence is an analytic
function. It follows that its zero set in R

d has no interior. Since 1̂�(k) = 0 only if g(k) = 0,
we conclude that the set E has no interior. �

Let us return to the general situation with an internal group H . Let � ⊂ H be a window
in H and assume that E(�) has no interior points. For notational simplicity let f := 1�.

Since D is open and 0 ∈ D, there is a r0 > 0 such that the cube Cr0 ⊂ D.
We define functions I n : Hn −→ R, n = 1,2, . . . , by

I (n)(w1, . . . ,wn) := �

(
� ∩

n⋂
j=1

(wj + �)

)
,

or equivalently,

I (n)(w1, . . . ,wn) =
∫

Rd

n∏
j=1

f̃ (wj − t)f (t)dt, (6)

where f̃ (w) := f (−w).

Lemma 2 For n ∈ N, I (n) is uniquely determined by γ
(n+1)

 .

Proof It is clear that I (n) is a continuous function supported inside (� − �)n. Since 
� is
dense in �, it follows that (
 − 
)� is dense in � − �. Moreover, for x1, . . . , xn ∈ 
 − 
,

I (n)(x�
1, . . . , x

�
n) = γ

(n+1)

 (−x1, . . . ,−xn),

which implies that I (n) is uniquely determined by γ
(n+1)

 . �

Up to density 0 changes, the compact set � is equally well described by its characteristic
function f = 1� or by its Fourier transform f̂ . Using the latter we shall show that � is
determined up to translation by γ

(2)

 and γ

(3)

 .

Define φ0 on D by

φ0(k) := f̂ (k)

|f̂ (k)| .

Then φ0(k) is a continuous function on D and |φ0(k)| ≡ 1. Since f̂ (0) = �(�) > 0,
φ0(0) = 1. A simple computation shows that

Î (n)(k1, . . . , kn) =
n∏

j=1

f̂ (kj )f̂

( n∑
j=1

kj

)
. (7)

When n = 1

I (1)(k) :=
∫

Rd

f̃ (k − t)f (t)dt.

Thus I (1) is the convolution product of the function f and f̃ and

Î (1)(k) = f̂ (k)
¯̂

f (k) = |f̂ (k)|2 .
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When n = 2,

Î (2)(k1, k2) = f̂ (k1)f̂ (k2)f̂ (k1 + k2). (8)

Let D(2) := {(k1, k2) : k1, k2, k1 + k2 ∈ D}. By the definition of r0, Cr0/2 × Cr0/2 ⊂ D(2).
On D(2) we define

ψ(2)(k1, k2) := Î (2)(k1, k2)

|f̂ (k1)||f̂ (k2)||f̂ (k1 + k2)|
.

By (8), for (k1, k2) ∈ D(2),

φ0(k1 + k2) = φ0(k1)φ0(k2)ψ
(2)(k1, k2). (9)

This implies that the function φ0 is a particular solution of the equation

φ(k1 + k2) = φ(k1)φ(k2)ψ
(2)(k1, k2), (10)

where φ is defined on D and (k1, k2) ∈ D(2). We point out here that this equation is entirely
determined by the functions I (1), I (2) since the function ψ(2) is given by them.

Equation (10) is related to the ‘homogeneous’ equation

ϕ(k1 + k2) = ϕ(k1)ϕ(k2), ϕ(0) = 1, (11)

where ϕ is defined on D and (k1, k2) ∈ D(2).
Let φ be an arbitrary solution of (10). Then φ/φ0 is a solution of (11) and by Proposition 2

(with G there being replaced with Ĥ ) it is the restriction to D of a character on Ĥ ; that is,

it is the restriction to Ĥ of an element of ˆ̂
H � H . Hence it is determined by some element

a ∈ H through χa : k �→ 〈k, a〉 ∈ U(1) and each solution of (10) has the form

φ(k) := φ0(k)χa(k). (12)

Finally, we get the main result of this section.

Theorem 3 Let 
 = Λ(�) be a regular model set and assume that E(�) has no interior
points (which is guaranteed if H is a real group). Then any model set with the same 2-point
and 3-point correlation measures as 
 is, up to density 0, a translate of 
.

Note All elements of the hull differ from translates of 
 by sets of density 0, see
[2, Proposition 7].

Proof Let 
′ be a model set for some irredundant cut and project scheme S ′ and suppose
that it has the same 2- and 3-point correlations as the model set 
 = 
(�) from the irre-
dundant cut and project scheme S . The equality of the 2-point correlations shows that we
can assume that S ′ = S .

Recall that (10) is determined by Î (1) and Î (2). Since 
′ has the same 2- and 3-point
correlations as 
, the function φ for 
′ corresponding to the function φ0 for 
 is another
solution of (10). As we have already shown, this implies that (12) holds for some a ∈ H .

Let f ′ be the characteristic function of the window of 
′. Then φ = f̂ ′/|f̂ ′| and |f̂ ′| =
(Î (1))

1
2 = |f̂ |. Thus

f̂ ′(k) := f̂ (k)χa(k).
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Taking the inverse Fourier transform on both sides of this equation we have

f ′ ∼ 1−a+�,

i.e. they are equal except possibly on a set of measure 0, which shows that up to density 0,

′ is a translate of 
. �

7 Counterexamples

In this section we give examples of cut and project schemes and model sets from them
for which the 2- and 3-correlations do not determine the window of the model set up to
translation or inversion. For these sets the corresponding sets E(�) have interior points.

7.1 A Periodic Example

The most obvious way to make the sets E(�) have interior points is to use a compact internal
space, for then Ĥ is a discrete group. In the case that H is a finite group we are dealing with
periodic structures, and for these it is long known that 2- and 3-correlations may fail to
characterize the structure. The paper of Grünbaum and Moore [12] has useful introduction
to the homometry problem for crystals (periodic structures) and some good ways of making
examples. One such example, put here into the language of model sets, is the following:

With N = 32, there are sets A,B ⊂ {0, . . . ,31} which have the same 2- and 3-point
correlations (when the point patterns are treated modulo N ) [12, Sect. 5.3], but which are not
equivalent by ‘rigid motions’. That is, they have the same pattern frequencies in Z/NZ for
all 2- and 3-point patterns. Explicitly such a pair is given by the exponents of the expansions
of the polynomials

pA(x) := 1 − x16

1 − x
(1 − x3 + x9)(1 − x + x3 − x4 + x6) = 1 + x7 + x8 + x9 + x12

+ x15 + x17 + x18 + x19 + x20 + x21 + x22 + x26 + x27 + x29 + x30

pB(x) := 1 − x16

1 − x
(1 − x3 + x9)(1 − x2 + x3 − x5 + x6) = 1 + x + x8 + x9 + x10

+ x12 + x13 + x15 + x18 + x19 + x20 + x21 + x22 + x23 + x27 + x30.

That is, A = {0,7,8,9,12, . . . ,30} and B = {0,1,8,9,10, . . . ,30}. Comparing the gaps
between successive positions in A and B along the line, namely (6,0,0,2, . . . ,1,0;1) and
(0,6,0,0, . . . ,3,2;1) where we wrap around modulo 32 at the semicolon, one sees directly
that the gap patterns are neither translationally equivalent or equivalent by reversal of direc-
tion.

Now form the cut and project scheme

R
π1←− R × Z/NZ

π2−→ Z/NZ

∪
L

�←→ Z̃

x ←→ (x, xN) �→ xN,

(13)

where xN := x mod N .



632 X. Deng, R.V. Moody

Fig. 1 A plot over a complete cycle of the diffraction of the periodic model set determined by the set A of
Sect. 7.1. The tick mark labels k stand for k/32 and the domain is shown for k = 0, . . . ,32. Note the vanishing
of the diffraction (extinctions) at all points 2k/32, k �≡ 0 mod 16

Then for A and B , taken modulo N , we have Λ(A),Λ(B). These are periodic subsets
of Z which are located at the points of A + NZ and B + NZ. To keep things straight
below, we will denote them by Λp(A), Λp(B), indicating their periodic nature. The pattern
frequencies for 2- and 3-point patterns of Λp(A) and Λp(B) are not altered when reduced
mod N , and hence are equal. Assuming normalization so that the density of Z is 1, the
appropriate volume function on Z/NZ is volZ/NZ(S) = card(S)/N for all S ⊂ Z/NZ.

This produces two (periodic) model sets which are not related by translation or inversion
of windows but which have the same 2- and 3-point correlations. The diffraction from either
of the two model sets is the same. It is periodic of period 1 and supported on the set 1

32 Z

with values explicitly given by

∣∣∣∣ 1

32
pA(exp(2πik/32)

∣∣∣∣
2

δ 1
32 Z

(k)

at k/32, k ∈ Z. (The label A can be replaced by B here.)

7.2 An Aperiodic Example

We can use this example to create distinct aperiodic model sets on the line which have
the same 2- and 3-point correlations. The example below, based on the standard Fibonacci
model sets, shows how this can be done.

Let τ := (1 + √
5)/2, let L := Z + Zτ , and let ′ : L −→ L be the conjugation mapping

defined by τ ′ := (1 − √
5)/2. Form the standard Fibonacci cut and project scheme

R
π1←− R × R

π2−→ R

∪
L

�←→ L −→ L

x ←→ (x, x ′) �→ x ′.

(14)

Each x = u + vτ ∈ L, u,v ∈ Z, is mapped to (x, x ′) = u(1,1) + v(τ, τ ′) ∈ L. We define
α : L −→ Z/NZ by α(x) = uN , i.e. reduction of u modulo N . Let W be a window in R and
Λ(W) the corresponding model set.

Now consider the combined cut and project scheme:

R
π1←− R × (R × Z/NZ)

π2−→ R × Z/NZ

∪
L

�←→ Lc −→ L × Z/NZ

x ←→ (x, (x ′, α(x))) �→ x� := (x ′, α(x)).

(15)
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Fig. 2 A fragment the Fibonacci model set {. . . ,−1−τ,−1,0, τ,1+τ, . . . } based on the window [−1, τ−1)

and the correspondingly thinned model sets using the congruence sets A and B of Sect. 7.1 above and be-
low it respectively. These two thinned sets have the same second and third moments, although they are not
translationally equivalent. The location of the origin is indicated by the black vertical line

Notice here that Lc := {(x, (x ′, α(x))) : x ∈ L}. With the subsets A,B above, we obtain
the model sets Λc(W × A) and Λc(W × B), where the subscripts c stand for the combined
cut and project scheme. In effect these consist of the points x of Λ(W) for which α(x) ∈ A

(resp. B).
Now consider any pattern {0, x, y} ⊂ L for Λc(W × A). Write x� = (x ′, r), y� = (y ′, s)

with r, s ∈ A. Up to the appropriate normalizing factor (see Theorem 1), the frequency of
the pattern in Λc(W × A), which is also the 3-point correlation γ (3)((x, y)), is

freq({0, x, y}) = volc((W × A) ∩ (−x� + (W × A)) ∩ (−y� + (W × A))

= volc((W ∩ (−x ′ + W) ∩ (−y ′ + W)

× A ∩ (−r + A)) ∩ (−s + A))

= volR((W ∩ (−x ′ + W) ∩ (−y ′ + W))

× volZ/NZ(A ∩ (−r + A)) ∩ (−s + A)).

Replacing A by B gives the three point correlation at (x, y) for Λc(W × B). However

volZ/NZ(A ∩ (−r + A) ∩ (−s + A)) = volZ/NZ(B ∩ (−r + B) ∩ (−s + B))

and so we have shown that Λc(W × A) and Λc(W × B) have the same 3-point correlations
(and hence also equal 2-point correlations). Due to the different gap patterns produced by A

and B the windows of the two model sets cannot be matched by translation or inversion.

7.3 Aperiodic × Periodic

Even simpler is to construct model sets of the form aperiodic × periodic with identical 2-
and 3-point correlations Suppose that � := Λ(W) is a model set arising from the cut and
project scheme (1). We take the direct product of this cut and project scheme and the one
given at (13), and take as the windows the sets W × A and W × B . This leads to model sets
� × Λ(A) and � × Λ(B).

Each instance {z, z + z1, z + z2} in � × Λ(A) of a pattern {0, z1, z2} in R
d × Z/NZ is

uniquely expressible as instances

{x, x + x1, x + x2} × {a, a + a1, a + a2}
from � and Λ(A) of the product

{0, x1, x2} × {0, a1, a2}
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of patterns from R
d and Z/NZ; and vice-versa. The frequency of {0, z1, z2} in R

d × Z/NZ

is the product of the frequencies of {0, x1, x2} in � and {0, a1, a2} in Λ(A).
The same goes when we use Λ(B), and so � × Λ(A) and � × Λ(B) have the same 2-

and 3-point correlations.

7.4 Comments on Real Spaces × Finite Groups

Let F be a finite group (with the discrete topology) and F̂ its dual (also finite). We are
interested in the Fourier transforms of characteristic functions on subsets of spaces of the
form R

m × F , and in conditions under which they may have zero sets with non-empty
interiors.

Give R
m × F the product topology. Let � ⊂ R

m × F be a non-empty relatively compact
set satisfying � = �◦ and write

� =
⋃
a∈F

(�a, a).

Let A be the set of elements a ∈ F for which �a has a non-empty interior. Then 1̂� : R̂m ×
F̂ −→ C:

1̂�(k, b) =
∑
a∈A

∫
�a

e−2πik·xχa(b)dx =
∑
a∈A

χa(b) 1̂�a (k)

where χa is the character on F̂ defined by a ∈ F .
For each fixed b ∈ F̂ , this is an analytic function of k on R̂m � R

m. Let Eb denote the
vanishing set of 1̂� on R̂m × {b}. In order that 1̂� vanish on a set with interior, we require
that some of the Eb have interior points. Being analytic on R

m × {b}, this requires

∑
a∈A

χa(b) 1̂�a (k) ≡ 0

and hence that ∑
a∈A

χa(b)1�a (k) ≡ 0 (16)

as a function on R
d .

There are straightforward ways to make this happen. For instance, if all �a , a ∈ A, are
equal then the requirement is simply that

∑
a∈A χa(b) = 0 for some b ∈ F̂ , which is certainly

possible.
This is what is going on in the examples above. The equation

∑
a∈A χa(b) = 0 becomes

pA(e2πib/N ) =
∑
a∈A

e2πia b/N = 0,

where b ∈ {0,1, . . . ,31}. This equation holds whenever b is even and different from 0, since
then the factor 1 + x + · · · + x15 of pA(x) evaluates to 0. Similarly for B .

On the other hand, for the Penrose point sets arising from the Penrose rhombic tiling,
the vanishing set E is indeed without any interior points. In this case the internal space is
C × Z/5Z and the windows are the pentagons P,−τP, τP,−P where P is the convex
hull of the 5th roots of 1 and the four listed windows are for congruence classes 1,2,3,4
mod 5 respectively [19]. Here it is easy to see that the zero condition (16) cannot possibly be
satisfied. So rhombic Penrose point sets are determined by their 2- and 3-point correlations.
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One final comment. One can raise the bar and ask about examples with equal 4-point or
higher correlations. There are no examples of the type that we have produced here, because
there are no finite cyclotomic sets like A, B above which are translationally inequivalent
but have equal 4-point correlations, [12]. However, extending the investigation to weighted
point sets, there are examples with equal second through fifth point correlations, [7].

8 Connections with Point Processes

Start with the cut and project scheme (1). Let � ⊂ H be a window (note the assumptions
on windows, given in Sect. 2) for a model set 
 = 
(�) in R

d . Let � := �. Then 
 is a
Delone set and there is a positive number r so that its distinct points are separated by at least
the distance r . Let Dr be the family of all discrete subsets of R

d whose points are separated
by at least the distance r . There is a uniformity on Dr whose entourages are generated by
the sets

UR,ε := {(�,�′) ∈ D2
r : � ∩ CR ⊂ �′ + Cε and �′ ∩ CR ⊂ � + Cε}

as R,ε vary over R>0.
The topology defined by this uniformity is a Fell topology, and so Dr is a compact Haus-

dorff space [8, Theorem 1]). The translation action of R
d on Dr is continuous and the pair

(Dr ,R
d) is a topological dynamical system [23].

The hull X(
) of 
 is the closure in this topology of the set of all translates of 
. It
is clearly a compact subset of Dr and is also translation invariant. Thus (X(
),R

d) is a
dynamical system in its own right.

It is known [25] that X(
) is uniquely ergodic. Let μ denote the unique ergodic probabil-
ity measure on it. There is a continuous R

d -equivariant mapping β : X(
) −→ T, called the
torus parametrization, from the hull into the group T of the cut and project scheme (1).
The inverse image in X(
) of any point ξ = (x, y) mod L is made up of sets of the
form x + Λ(−y + �′) for some set �′ satisfying �◦ ⊂ �′ ⊂ � [2, 25]. If 
 is a reg-
ular model set, then so are all the elements of X(
). Furthermore, assuming regularity,
μ-almost surely the inverse image of ξ = (x, y) mod L consists of just one point and it is
x + Λ(−y + �◦) = x + Λ(−y + �). These elements are called non-singular elements of
X(
). See [2, Sect. 5.3] for more details.

Thus the point sets that make up X(
) are model sets and almost all of them are non-
singular. All of the point sets in X(
) have point correlations of all orders k, and these
k-point correlations are identical for all the elements of X(
). Thus we may speak of the
k-point correlation of X(
).

There is an obvious mapping N from the bounded measurable subsets of R
d into

L2(X(
),μ) defined by

N(A)(�) = card(� ∩ A).

The mapping N can be construed as an ergodic uniformly discrete point process, with∫
X(
)

N(A)dμ being the expectation for the number of points in A for a randomly cho-
sen (according to the law μ) point set � ∈ X(
). The function N extends naturally to a
R

d -equivariant mapping N : Cc(R
d) −→ L2(X(
),μ)) defined by

N(f )(�) =
∑
x∈�

f (x)

for all � ∈ X(
).
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Following [9], there has been increasing interest in studying the mathematics of qua-
sicrystals by using ideas from the theory of point processes. Although quasicrystals (and
model sets!) are, by their very nature, assumed to be highly ordered (correlated), and hence
quite atypical from the point of view of the theory of point processes, nonetheless the tech-
niques of this theory are applicable and quite effective. For a more detailed and comprehen-
sive exposition of this point of view see [6].

There is a one-one correspondence between the correlation measures of a typical point
set and the moment measures of the corresponding point processes [5, Sect. 12.2]. The cor-
respondence between the 2-point correlation and the first reduced moment measure was uti-
lized by Gouéré [9] in his analysis of pure point diffraction and almost periodicity. In [6], we
prove that an ergodic point process of uniformly discrete point sets is uniquely determined
by its moments, or equivalently, all of its correlation measures.

This implies that solving the inverse problem for quasicrystals (i.e. determining the law
of the corresponding point process) is equivalent to knowing all of its k-point correlations.
In this language we have from Theorem 3:

Theorem 4 Let X(
) and X(
′) be point processes from regular model sets and suppose
that their second and third moments are the same. Then their cut and project schemes may
be identified. If T is the corresponding compact Abelian group and β , β ′ are corresponding
torus mappings, then for each ξ ∈ T the elements of β−1(ξ) and β ′−1(ξ) all differ from one
another at most on sets of density 0.

Another approach to the way in which correlations link to the structure of the dynamics
in the pure point case is given in [17]. Here the setting is a pure point ergodic uniformly
discrete point process (X,μ,N). The diffraction is almost always the same for the 
 ∈ X

and it the Fourier transform of the first moment of the Palm measure of the process. The
group M generated by the set S = −S of positions of the Bragg peaks is the Fourier module
of the process. There it is proved that if S + · · · + S = M , where there are n summands,
then the point process is determined by the 2-, 3-, . . . , (2n + 1)-point correlations. Thus if
there are no extinctions (S = M) we need only the 2- and 3-point correlations. This result
is not as strong as we have obtained here for real model sets with real internal spaces, since
we have made no requirements on S. On the other hand, it goes well beyond model sets and
works for general locally compact Abelian groups, and furthermore suggests a fundamental
role for the extinctions in understanding how much of the dynamics is controlled by the
diffraction.
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